Depth Estimation from Single Image Using CNN-Residual Network

نویسندگان

  • Xiaobai Ma
  • Zhenglin Geng
  • Zhi Bie
چکیده

In this project, we tackle the problem of depth estimation from single image. The mapping between a single image and the depth map is inherently ambiguous, and requires both global and local information. We employ a fully convolutional architecture, which first extracts image feature by pretrained ResNet-50 network. We do transfer learning by replacing the fully connected layer of ResNet-50 with upsampling blocks to recover the size of depth map. The upsampling block combines residual learning concept. This CNN-Residual network can be trained en-to-end, and runs real time on images with enough computing power. We demonstrate that our method of doing up-sampling by CNN-Residual network yields better result than fully connected layer, because it avoids overfitting. We also compare our model with pure CNN network and illustrates the effectiveness of tansfer learning. We also show the influence of different loss functions during training. The results are shown by comparing qualitative visualization and quantitative metrics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference

This paper proposes a new residual convolutional neural network (CNN) architecture for single image depth estimation. Compared with existing deep CNN based methods, our method achieves much better results with fewer training examples and model parameters. The advantages of our method come from the usage of dilated convolution, skip connection architecture and soft-weight-sum inference. Experime...

متن کامل

Convolutional Neural Network based Age Estimation from Facial Image and Depth Prediction from Single Image

Convolutional neural network (CNN), one of the most commonly used deep learning methods, has been applied to various computer vision and pattern recognition tasks, and has achieved state-of-the-art performance. Most recent research work on CNN focuses on the innovations of the structure. This thesis explores both the innovation of structure and final label encoding of CNN. To evaluate the perfo...

متن کامل

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Single Image Super-Resolution with a Parameter Economic Residual-Like Convolutional Neural Network

Recent years have witnessed great success of convolutional neural network (CNN) for various problems both in low and high level visions. Especially noteworthy is the residual network which was originally proposed to handle high-level vision problems and enjoys several merits. This paper aims to extend the merits of residual network, such as skip connection induced fast training, for a typical l...

متن کامل

Unified Depth Prediction and Intrinsic Image Decomposition from a Single Image via Joint Convolutional Neural Fields

We present a method for jointly predicting a depth map and intrinsic images from single-image input. The two tasks are formulated in a synergistic manner through a joint conditional random field (CRF) that is solved using a novel convolutional neural network (CNN) architecture, called the joint convolutional neural field (JCNF) model. Tailored to our joint estimation problem, JCNF differs from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017